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Abstract—This paper presents a new approach to determining
the occupancy area of a pedestrian for autonomous driving.
To do this, a probabilistic prediction of pedestrian behavior
is calculated, which results in the probability of presences.
The occupancy prediction can be determined on the basis of
this probability as a function of an accepted risk. To predict
the behavior, the first step involves using a physical model
to determine the possible presence locations. The subsequent
assessment of the movement options based on the statistically
representative pedestrian behavior, the relevant static objects
and the interaction of dynamic objects allows the probabilities
of presences to be determined in arbitrary situations. The
effectiveness of the prediction is illustrated by using a numerical
example which indicates the reduction of occupancy area size
by using a suitable prediction method.

Index Terms—occupancy prediction, motion prediction,
interaction-aware, autonomous cars

I. INTRODUCTION

Algorithms for autonomous driving consider the occupied

area of other traffic participants within a defined prediction

time for planing or validating their future maneuvers. There-

fore, this occupied area should be on the one hand as small as

possible to provide enough drivable space for the autonomous

vehicle (AV) but on the other hand large enough to almost

certainly include the real object movement. The approach

presented in this work tries to fulfill this trade off with a new

interaction-aware prediction for pedestrians which focuses on

the determination of the occupied area.

To the knowledge of the authors only Koschi [1] presents

an approach of determining the occupied area of pedestrians.

However, the aim is to include all possible future positions to

guarantee the pedestrians safety. In order to realize the trade-

off between the size of the occupied area and the prediction

safety, the authors beliefs that including all feasible positions

is not suitable, instead the occupied area should be deter-

mined by the likely areas of the pedestrian movement. There-

fore, the behavior prediction which calculates the probabilist

of presence has to fulfill sophisticated requirements. In the

literature a variety of prediction approaches for pedestrians

are available. However, applications in this field of work
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tend to focus on tracking people [2]–[7] and navigating

small robots in an environment full of pedestrians [8]–[12].

Accordingly, the following four requirements, which result

from the aim to determine the occupancy prediction, aren’t

fulfilled by the known approaches, like discussed in the

related work section.

• Differentiated analysis of static objects. In road traffic,

apart from static objects (walls) that cannot be traversed,

there are also those objects that influence behavior but

can nonetheless be traversed, e.g. sidewalks and lane

markers. A suitable prediction method should not cate-

gorically rule out the crossing of various static objects,

but analyze their influence in a differentiated manner.

• Interactions between various object classes. Beside the

influence of other pedestrians, the influence of cyclists

and vehicles on pedestrians in road traffic is also rele-

vant. The method should therefore consider interactions

on a cross-object class basis.

• Gap-less prediction. It must be ensured that probable

presence locations in the occupancy space are not re-

jected due to an incomplete prediction.

• Worst case rather than best fit. Pedestrians in particular

are at risk in road traffic due to their vulnerability; to

ensure their integrity the occupancy space should follow

a worst-case analysis where doubt exists.

To ensure the method outlined in this paper fulfills the four

described requirements, the possible future presence space

is analyzed fully in a discrete form in the first step. Using

suitable methods each movement option is then assessed on

the basis of the following criteria:

• Statistically representative pedestrian behavior, derived

from film material from the University of Stanford [13]

• Relevant structural elements of road traffic (e.g. lane

markers) and static objects

• Mutual influence of dynamic objects

Finally the assessment of movement options and the future

presence locations (FPL) can be combined to determine the

probabilities of presence of a pedestrian as a prediction result.

To illustrate the prediction part, a numerical example is dis-

cussed which finally shows the correct occupancy prediction.

II. RELATED WORK

The following discussion illustrates that, in the authors’

view, there is no method familiar from the literature that

meets all the requirements set out in this paper, even though

230

2019 Third IEEE International Conference on Robotic Computing (IRC)

978-1-5386-9245-5/19/$31.00 ©2019 IEEE
DOI 10.1109/IRC.2019.00042



in some cases impressive prediction results are achieved.

a.) Approaches with a focus on tracking: Helbing [2] pub-

lished in 1998 the first approach considering mutual interac-

tion between pedestrians, called Social Force Model. Luber

[3] extends the Social Force Model by including a proba-

bilistic consideration to the prediction. However, Helbing and

Luber limit the approach to predicting only one trajectory.

Pellegrini [4] presents a model in the shape of Linear

Trajectory Avoidance (LTA) which analyzes the interactions

with other people not just on the basis of the current position,

but extrapolates their behavior. He extends his model in a

further publication [6] to include a probabilistic approach.

Thus the approach can analyze multiple movement options

simultaneously, but due to the computing time requirements

places a limit on the analyzed movement options. Besides the

usual influences, Yamaguchi [7] models in his approach the

coherence of groups and the pull of attractions. In addition,

Alahi [5] uses recurrent neural network (RNN) for prediction.

b.) Approaches with a focus on navigating through crowds:
Helble and Cameron [8] implement a predictive model as part

of potential field-based trajectory planning. Using an artificial

neural network they, however, predict only one future tra-

jectory. Both the Interaction Gaussian Process Model (IGP)

from Trautman [9] and the model from Vemula [10] compute

a statistical distribution of the various trajectories, but do

not take account of static objects in their prediction. The

approaches of Thompson [11] and Bennewitz [12] describe

a probabilistic prediction in the indoor area which, in the

authors’ view, cannot, however, be transferred to the outdoor

area. Thompson’s [11] requires explicit destinations (desk,

printer, etc.) for the prediction, which are difficult to deter-

mine for an AV. Bennewitz [12] by contrast uses movement

patterns learned from training data to predict the behavior.

Given the enormous diversity in road traffic the approach

therefore seems unsuitable for an AV.

III. MODEL

The movement of pedestrians is limited by low walking

speed and is also highly variable compared with other road

users due to rapid changes in direction. Since the required

gap-less analysis of the movement options cannot be achieved

due to computing time limitations, the authors decided to an-

alyze the movement options discretely through homogeneous

discretization of the change in direction and forecast time.

Based on an analysis of the frequencies of various changes

in direction in section IV-A it is not productive to analyze

angle changes larger than ψmax = 90◦ due to their low

probability of occurrence of 1% compared with the storage

and computing resources required. An angular resolution of

Δψ = 5.7◦ (0.1rad) and a temporal resolution Δt = 0.1s
ensures that the position resolution is always smaller then

the size of the pedestrian and still coarsely enough to meet

the real time requirements. The chosen prediction time of

tmax = 2.5s seconds is long enough to respond early on

to the movement decisions of pedestrians, while being short

enough for the model assumption of a constant angle change

from the start time to be used productively. At this point

it must be noted that the paramter ψmax, tmax, Δψ and

Δt can be changed at any time with quadratic effects on

the computing time. Equations 1 and 2 describe the formal

discretization of Δψ and Δt, in which ψ0 describes the

current direction.

imax =
2 · ψmax
Δψ

(1)

ψ(i) = −ψmax + ψ0 + i ·Δψ i ∈ N ∧ k ∈ [0; imax]

kmax =
tmax
Δt

t(k) = k ·Δt k ∈ N ∧ k ∈ [0; kmax]

(2)

To determine the FPLs the change in direction of the pedes-

trian can be taken into account in various ways. This assump-

tion does not obviously correspond to a natural movement

that tends to take place continuously. Nonetheless the model

assumption make sense here since it is a worst-case analysis

from safety aspects, while also corresponding to the simplest

possible theoretical analysis. To take into account the spatial

extension, a pedestrian is not analyzed as a point, but as a

circle with a defined radius rPed = bPed/2 = 0.3m. By way

of summary the movement modeling is illustrated graphically

in Figure 1. In this respect, the rotation can be seen; the center

of rotation is not the center of the circle, but in each case on

of the two orthogonal points to the moving direction, called

’corners’. Starting from the current position, the rotation of

a.) b.) c.)

Fig. 1. Pedestrian movement - a.) Starting position −−→pL,0,−−→pR,0 as green

points - b.) Position after rotation
−→
pRL(ψ),

−→
pRR(ψ) as blue points - c.) Position

after lateral movement −→pL(ψ, 2.5s),−→pR(ψ, 2.5s) as orange points

the pedestrian is taken into account in equations 3 and 4

like illustrated in figure 1. R(ψ) corresponds to the rotation

matrix around the angle ψ, the points −−→pR,0 and −−→pL,0 describe

the starting positions of the left and right boundary (corner)

of the pedestrian vertically to the direction of movement. The

result of the equations are the new vertices
−→
pRL(ψ) and

−→
pRR(ψ).

−→
pRL(ψ) =

{−−→pR,0 +R(ψ) · (−−→pL,0 −−−→pR,0) if ψ > 0
−−→pL,0 if ψ < 0

(3)

−→
pRR(ψ) =

{−−→pL,0 +R(ψ) · (−−→pR,0 −−−→pL,0) if ψ < 0
−−→pR,0 if ψ > 0

(4)

The subsequent calculation in accordance with equations 5

and 6 generates the final trajectories of a pedestrian. The

velocity v = v0 is assumed to be constant over the forecast

period. The prediction error resulting from this assumption

can be regarded as sufficiently small given the prediction
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Fig. 2. Calculated FPLs for a pedestrian with −−→pL,0 = [10, 10.3]′, −−→pR,0 =
[10, 9.7]′, ψ0 = 0◦ and v0 = 1m

s2
- a.) −→pL(ψ, t) in blue and −→pR(ψ, t) in

green - b.) −→pT (ψ, t) in orange

period of 2.5 seconds.

−→pL(ψ, t) =
−→
pRL(ψ) +R(ψ) · (v · t 0)′ (5)

−→pR(ψ, t) =
−→
pRR(ψ) +R(ψ) · (v · t 0)′ (6)

The calculated FPLs are shown in figure 2-a. For each

analyzed angle a corridor made up of two trajectories is

produced; however, many intersect points between the left

and right boundary are produced. For the calculation of the

probabilities of presence this format is obviously unsuitable

since certain locations are reached by multiple movement

options. Therefore, a new trajectory array −→pT (ψ, t) is created

per equation 7. This simple resolving of the intersect points

is only possible since a suitable rotation center was chosen

beforehand, and so the start point is not changed by the

rotation for half of the angular range. The final trajectories

of the FPLs are shown in graphic 2-b.

−→pT (ψ, t) =
{−→pL(ψ, t) if ψ < 0
−→pR(ψ, t) if ψ > 0

(7)

IV. ACCEPTANCE DISTRIBUTION

With this approach, the future behavior of a pedestrian

identified by index l is determined based on three different

influences. Each of these influences is described by its own

acceptance distribution; the following sections discuss the

modeling, the calculation and the underlying assumptions.

The final acceptance distribution, which describes the pedes-

trian’s behavior under all three influences, can be calculated

by multiplying the individual acceptance distribution accord-

ing to equation 8. With this procedure, further influences can

be added in the future if so required.

fl,Akz(i) = fl,Statistic(i) · fl,Static(i) · fl,Dynamic(i) (8)

A. Statistically representative behaviors

This statistical acceptance distribution should map the

statistically representative pedestrian behavior. This should

result in a prediction as clear as possible when the other

influences are subject to a constant acceptance of all move-

ment options, and with untypical behavior first evaluated by

a lower acceptance.

To ensure this acceptance distribution has a reliable basis,

the typical rotation behavior of pedestrians is determined

from the Stanford Drone Dataset [13]. This describes the

pedestrian positions by means of bounding box coordinates.

In the first step any pedestrian trajectories are removed from

the analysis that do not meet the following requirements:

• Pedestrian trajectory exists for at least 2 · tmax = 5s
• Pedestrians are constantly in motion (v > 0.65ms2 )

• Bounding box is not to narrow bBoundingbox > 0.6

In the simplest case it would be possible to determine the

frequency distribution by calculating the angle change be-

tween the individual positions as per Figure 3-a. The authors,

however, rejected this approach as the dataset provides the

position in the form of a bounding box. The information

that a pedestrian may be located at any point within this

bounding box would be completely ignored by reducing to

an individual trajectory. To determine correctly the angle

x/m

b.)

x /m
y

/m

a.)

ψ
ψ

ψ

ψ

ψ
ψ

Fig. 3. Example sketch to visualize the determination of the rotation angle
- a.) derived trajectory from bounding box - b.) left/right boundary in blue
and red, in which dashed lines are the original bounding box width and solid
lines are the reduced bounding box width

frequency, the bounding box is converted in the first step

to a left/right boundary of the pedestrian movement and this

is then narrowed on both sides respectively by a half average

pedestrian width (bPed = 0.6) . Through this reduction of the

possible presence space, the boundaries apply to the center

of the analyzed pedestrian.

In the first step of the angle change analysis, a point of the

left and right boundary within the distance walked within

the forecast period v · 2.5s is determined, starting from the

center position at the start time in each case. As a constraint it

must be ensured that the connecting line between start point

and edge point in each case does not intersect any of the

two boundaries. The line between the two determined edge

points describes now approximately all possible positions

of the pedestrian, who could have reached these positions

after 2.5 seconds. Starting from this position description, a

point with a distance equal to the distance walked v · 2.5s
is now recalculated for the two edge points respectively

on the opposite side. With this step the aforementioned

constraint must also apply. Through the new edge points

another line is determined which describes with the existing

line the possible presence locations at two points in time. The

analyzed pedestrian could have walked any angle between

the extreme values of the two lines to get from line 1 to

line 2. Accordingly the frequency in an associated frequency

distribution for all angles between the extreme values is in-
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Fig. 4. Result of the frequency analysis in comparison between approxi-
mated function in black and relative frequency in red

creased by 1. The process is repeated until the trajectory was

analyzed fully. The approach is shown graphically in Figure

3-b. If no points within the distance walked can be found

due to the constraint, the required distance is reduced until

the constraint is no longer violated to ensure that even these

angle changes are registered. The result of the angle change

analysis of 20000 trajectories in total with a distance walked

of 65 km is illustrated in Figure 4. By approximating the

relative frequency distribution the mathematical description

in equation 9 was determined with an absolute residual error

of 0.1367. Figure 4 shows the approximated function and the

relative frequency distribution in comparison.

H(ψ) = e−1.23758·ψ2

(9)

The acceptance of a rotation change for the statistical behav-

ior of a pedestrian can be seen as per equation 10 directly

from the distribution function.

fl,Statistic(i) = e−1.23758·ψ(i)2 (10)

B. Relevant structural elements of road traffic and static
objects

This chapter presents the acceptance distribution for quan-

tifying the influence by static objects such as guardrails and

curbs as well as structural elements such as lane markers.

For this purpose, the static objects must be available in the

form of a polygonal line and are indexed using index S.

To quantify the influence, the pedestrian is assumed to avoid

static objects proportional to the effort involved in traversing

them. Accordingly, a weighting GS is added to each polyg-

onal line S that quantifies the effort of traversability in a

value range of 0 to 1, e.g. no traversable static objects 1,

solid road marking 0.8, dashed road marking 0.1 and curbs

0.1. The weighting of the static objects seems plausible to

the authors and demonstrates good results in simulation.

To determine the static acceptance distribution, each polyg-

onal line is intersected with the FPLs of a pedestrian. If

there is one or more intersecting points between a polygonal

line and future pedestrian positions, the intersecting point

with the index of the angle change i and the index of

time step k are entered in static collision set Il,stat =
{k, i, S|intersect(k, j, S)}. The assumption is also made

that pedestrians react more intensely to nearby objects than

to objects further away. Therefore the period of time of the

pedestrian to the possible overrun or collision with an object

is taken into account in the assessment. An intersecting point

with a polygonal line is thus evaluated using the weighting

and collision time in equation 11. In this equation, the mini-

mum across all evaluated collisions of a considered trajectory

i is also formed. The greatest and, thus, most important

influence related to a trajectory is therefore factored into

the acceptance distribution. Finally, equation 12 is used to

calculate the static acceptance distribution fl,Static. To this

end, another minimum operation across all calculated time

step is performed to consider the most significant influence

(minimum acceptance) per direction.

αl,stat(k, i) = min
i:(k,i,S)∈Istat

(
(1−GS ) · t(k)

tmax

)
(11)

fl,Static(i) = min
∀k

αl,stat(k, i) (12)

C. Dynamic objects

The behavior of pedestrians is decisively influenced by

other pedestrians as well as by other road users. For quani-

sation of this influence the dynamic acceptance distribution

is introduced. The conceptual basis for this is the assumption

that pedestrians want to avoid collisions with other objects

including other pedestrians. Due to the statistically uneven

distribution of probabilities of presence, not all collisions are

equally probable. Therefore a initial probability of presence

distribution is calculated based on the acceptance distribu-

tion from subsections IV-A and IV-B. Although this does

neglecter dynamic objects, it does provide an initial estimate

of future behavior. To take into account other object types

it is assumed that suitable probabilities of presence are

also available for these objects. The forced reduction of the

acceptance with angle change with a collision risk of zero

is not considered practical as pedestrians obviously accept

small risks. For instance, the passing of another pedestrian

would otherwise not be possible since at all times there is the

theoretical risk that a change in direction of the counterpart

leads directly to a collision. In view of this consideration,

the objective of modeling is to reduce the maximum collision

probability for statistically independently moving pedestrians

to a minor, accepted risk Pcol,min. For this purpose, a

correction factor βl is determined for each collision from the

perspective of each object. This value describes the factor

that would be necessary to reduce the resulting collision

probability to Pcol,min when multiplying by one’s own

probabilities of presence. This is mathematically formulated

in equation 13.

Pcol,min =

βl(x, y, t) · Pl(x, y, t) ·
∑lmax

lc:lc �=l (βlc(x, y, t) · Plc(x, y, t))
(13)

These correction values serve as a basis for determining

the dynamic acceptance distribution. An additional condi-

tion must be defined, however, since fully quantifying all

correction values by equation 13 is mathematically under-

determined. This is illustrated by the following example:

Two pedestrians may have a probability of presence of 90%

(pedestrian 1) and 10% (pedestrian 2) at a collision point.

To obtain a Pcol,min of 1% corresponding to equation 13,
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any combination of the two correction values β1 and β2 can

be selected, e.g. β1 = 1/9,β2 = 1. However, to ensure that

the calculation of βl is grounded in a reasonable and logical

basis, the correction values should be formulated indirectly

proportional to the probability of presence. This takes into

account the following assumption: Pedestrians who approach

a collision point with a low probability tend to avoid the

collision as they have other viable alternatives (areas with a

high probability) at their disposal. A pedestrian with a high

probability at a collision point, however, will be less likely

to avoid the collision point due to a lack of alternatives. This

additional condition is modeled in equation 14.

βla(x, y, t)∑lmax

lb
βlb(x, y, t)

=
Pla(x, y, t)∑lmax

lb
Plb(x, y, t)

(14)

From the two fundamental assumptions in formula 13 and

14 equation 15 can be derived, to calculate the individual

correction values. Additionally the condition Pl(x, y, t) ·∑lmax

lc:lc �=l Plc(x, y, t) > Pcol,min ensures that only correction

factors are calculated if the probability of collision is higher

than permitted threshold Pcol,min.

βl(x, y, t) =

√
Pcol,min

∑lmax
lc:lc �=l[Plc (x,y,t)]

2

∀Pl(x, y, t) ·
∑lmax

lc:lc �=l Plc(x, y, t) > 0
(15)

To be able to efficiently determine the correction factors,

equation 15 must be discretized. To this end, the FPLs of a

pedestrian are intersected with the FPLs of any other object

and the calculated collision points stored in the dynamic

collision set Il,dyn = {(k, i, Pr)|intersect(k, i, ir)}. Index

k describes the time increment of the collision from the

pedestrian’s perspective, i the change in direction of the

pedestrian and Pr the probability of presence of the other

object. Using the fully calculated set, it is possible to convert

equation 15 to equation 16.

βl(k, i) =

√
Pcol,min∑

(k,i):(k,i,Pr)∈Il,dyn
P 2
r

(16)

In the final step, the dynamic acceptance distribution is de-

termined from the correction factors, because the correction

factors determine an individual correction value for each

collision on a trajectory. The acceptance distribution, on the

other hand, must calculate a resulting correction value that

finally evaluates the acceptance of the respective change-in-

direction path. A minimum operation across all time steps

is performed again to consider the most significant influence

(minimum acceptance) per direction.

fl,Dynamic(i
′) = min

∀k
βl(k, i) (17)

V. PROBABILITIES OF PRESENCE

This section describes calculating the probabilities of

presence. Therefore the probability of a future pedestrian

position point Pl(k, i) is simply defined by the value of

the predicted direction i in the final acceptance distribution
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Fig. 5. probability distribution Pl(k, i) based on fl,Akz(i) =

e−1.23758·ψ(i)2 (pedestrian state: ψ0 = 0◦, v0 = 1m
s2

, x0 = 10m and
y0 = 10m)

fl,Akz . However, it must be ensured that the sum of all

probabilities of a time increment initially correspond with

the pedestrian width bPed. By means of normalization to

the pedestrian width bPed instead of the value 1, the spatial

extension is also taken into account in this step. Equation 18

therefore introduces the time-dependent normalization factor

cl and calculates the sum of all probabilities as a double

integral via the X and Y positions. In equation 19, the

time-dependent normalization factors are used to calculate

the probability distribution Pl like discussed before.

cl(k) ·
∫
x

∫
y

Pl(x, y)dydx
!
= 1 · bPed (18)

Pl(k, i) = cl(k) · fl,Akz(i) (19)

The probability distribution Pl(k, i) is the discretized pres-

ence probability of the behavior of a pedestrian. The com-

plete prediction of probabilities Pl(x, y) required in the

introduction can be made by means of linear approximation

based on the four nearest spatial grid points. Points that lie

outside the potential future presence areas are assigned a

probability of 0.

The prediction result of an example acceptance distribution

is shown in Figure 5; the grid structure corresponds to the

discretized probability distribution and the area of continuous

probability distribution. At the current pedestrian position

the probability is 1. Over time the possible presence space

of the pedestrian is enlarged whereby the probabilities are

increasingly distributed and their amount thus reduced. As

a result of the approach described, the prediction rightly

becomes more uncertain as the prediction time increases.

Finally, it can be ascertained that the projection graphic of

the presence probabilities is clearly understandable as results

while it can also be transferred very easily to an occupancy

area by adding to the occupancy are all presence locations

whose probability is greater than a defined risk Prisk.

VI. NUMERICAL EXAMPLE

The situation in figure 6 shows a curb which is bordered

on the right by a wall and on the left by a road. Two

pedestrians move slowly next to each other upwards. A

second faster person (blue) is approaching from behind who

intends to pass the two slow pedestrians by moving into
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the road. This maneuver of the faster considered person can

only be predicted by means of a differentiated analysis of

static objects in combination with the consideration of object

interactions. While fully avoiding static objects, it would not

be possible to leave the curb. However, it must be seen in this

situation the early hazard detection ”Pedestrian might move

into the road” is particularly important for AVs to produce

an overall safe outcome.

The retention of the current direction along the curb is

assessed both by the statistical acceptance distribution and

by the static acceptance with the highest value 1 in figure

6-a. The statistical acceptance falls according to the normal

distribution with increasing change in direction. By contrast,

with the static acceptance the departure toward the road (1.8

to 3.14 rad) via the minimal weighted curb edge is given a

relative high acceptance of 0.9. Changes in direction which

lead to the wall on the right (0 to 1.1 rad) of the curb

receive, by contrast, a small static acceptance value of 0.6.

As the curb is blocked by the two slower pedestrians, the

dynamic acceptances of all angles, which lead to remaining

on the curb (0.6 to 2.2 rad), are sharply reduced. Conversely

the remaining angles receive the acceptance value 1. The

combination of the three influences produces a significant

local maxima at 2.25 rad, which corresponds to a movement

toward the road. Combining the acceptance distribution with

the possible presence locations shows the correct prediction

that the pedestrian intends to move into the road in figure 6-b.

Finally the deviated occupied prediction for different Prisk
is also shown in figure 6-b. The AV will avoid the occupied

area for all shown Prisk, since the street is always blocked. In

addition, the trade off between the size of the occupied area

and the safety of the pedestrian is successfully implemented

in this example, because even the much smaller black framed

area blocks the dangerous part of the street.

VII. CONCLUSION

This paper presents an new method for predicting the

behavior of pedestrians. Compared with previous approaches,

the focus was particularly on determining the occupancy area

for an AV. The advantages lie in a complete probabilistic pre-

diction, a worst-case rather than best-fit modeling, differenti-

ated incorporation of static objects, and suitable consideration

of interactions which can process any object class for which

a probabilistic prediction model exists. The effectiveness was

demonstrated in a numerical example which shows the ability

of the approach to reduce the size of occupied area due to

the behavior predictions without neglect the dangerous areas.
In future it seems worthwhile to validate the approach in

an environment dominated by road traffic. By additionally

taking the inaccuracy of sensors into consideration, this

approach could be used in a wide range of vehicle assistance

systems up to autonomous vehicles.
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